Tag Archives: Evolution


The Evolution of Agency Michael TomaselloI thought developmental and comparative psychology professor Michael Tomasello’s 2019 book Becoming Human: A Theory of Human Ontogeny was brilliant and rigorously argued. Imagine my surprise to find the first three chapters of this short work (164 pages) practically insulting because of sloppy writing and terminological vagueness.

As a result, I decided to call it a day – even though, admittedly, the remaining chapters (about the agency of apes and humans) might play more into Tomasello’s strengths as a researcher. I guess it’s my loss – 32.48 euros to be precise – but I cannot but operate using inference if I read scientific books: if your base is brittle, I’m not going to risk dwelling in a superstructure that seems solid. It’s a form a prejudice, yes, but my time is limited, and there’s way too much else to read & learn.

Even if I didn’t read it completely, I do have a few thoughts and criticisms to offer, and I hope this review will offer some food for thought.

For starters, let me quote the blurb from MIT Press, so that you know what the book is about:

Nature cannot build organisms biologically prepared for every contingency they might possibly encounter. Instead, Nature builds some organisms to function as feedback control systems that pursue goals, make informed behavioral decisions about how best to pursue those goals in the current situation, and then monitor behavioral execution for effectiveness. Nature builds psychological agents. In a bold new theoretical proposal, Michael Tomasello advances a typology of the main forms of psychological agency that emerged on the evolutionary pathway to human beings.

Tomasello outlines four main types of psychological agency and describes them in evolutionary order of emergence. First was the goal-directed agency of ancient vertebrates, then came the intentional agency of ancient mammals, followed by the rational agency of ancient great apes, ending finally in the socially normative agency of ancient humans. Each new form of psychological organization represented increased complexity in the planning, decision-making, and executive control of behavior. Each also led to new types of experience of the environment and, in some cases, of the organism’s own psychological functioning, leading ultimately to humans’ experience of an objective and normative world that governs all of their thoughts and actions. Together, these proposals constitute a new theoretical framework that both broadens and deepens current approaches in evolutionary psychology.

Before I’ll discuss the book itself, it is of note that the blurb makes a curious distinction in the very first lines. Aren’t these organisms that have “feedback control systems” biological? Aren’t these systems itself biological? Didn’t these systems evolve biologically? I can’t fully put my finger on it, but I have the feeling this is the crux of the matter at hand, and the conceptual quagmire on which Tomasello builds his theory, the ontological reason for his vagueness and his at times muddled thinking. I’m sure the last sections of the book on human social normative psychology won’t suffer as much from this problem as his first chapters – if they even suffer from it at all – but if you present your book as an evolutionary account, you better start it right.

Anyhow, the remainder of this text consists of a few thoughts and examples that are in no way an attempt at a full critique or discussion of the parts of the book I did read.

Continue reading


The Evolution of the Sensitive Soul Learning and the Origins of ConsciousnessAs with most of my non-fiction reviews, I’ll first give a general overview & appraisal of the book. After that there’s a lengthy section with quotes and paraphrases of stuff I want to keep on record, and those could be of interest to you too.

What is the mind?
It is the sound of the breeze
That passes through the pines
In the Indian-ink picture.

Ikkyū Sōjun, 15th century

The Evolution of the Sensitive Soul: Learning and the Origins of Consciousness is a mammoth: 482 pages of text, 62 pages of notes, 72 pages of bibliography and an index of 28 pages. It took a decade to write.

Eva Jablonka is a microbiologist & evolutionary theorist with a Ph.D in genetics. She is especially known for her interest in epigenetic inheritance, and she co-authored the landmark Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life with Marion Lamb. That book was published in 2005 by MIT Press – with a revised edition in 2014 – and on the strength of this book I’ve added it to my TBR. Simona Ginsburg is a chemist with a Ph.D. in physiology.

The title is a bit misleading in the sense that the moniker ‘sensitive soul’ might sound New Age-ish, but make no mistake: this is as scientific as non-fiction can get. Jablonka & Ginsburg use the term ‘soul’ as an hommage to Aristotle, and the next two quotes elaborate a bit on that, and at the same time set the stage:

The Aristotelian soul is the dynamic embodied form (organization) that makes an entity teleological in the intrinsic sense – having internal goals that are not externally designed for it but that are dynamically constructed by it.


From an evolutionary point of view, understanding the transitions that resulted in the three Aristotelian goal-directed systems is enormously challenging. The first problem, understanding the transition to the first living system, to the nutritive (/reproductive) soul, is still not fully solved, although great strides have been made in this domain. Very little is known about the second, understanding the transition to subjective experiencing, the evolutionary origin of the sensitive soul. The third, understanding the transition to rationalizing, symbolizing animals, to the rational (human) soul, is one of the hottest topic in present-day evolutionary-cognitive biology, and progress is being made. All of these goal-directed systems are the products of chemical and biological evolution, and there is an evolutionary continuity between them.

The book has two distinct parts: the first a history of the biological conceptions of ‘consciousness’ and some of its philosophical foundations – from Jean-Baptiste Lamarck, Herbert Spencer, Charles Darwin and William James, via Pavlov and Skinner to contemporary neuroscience. The second part looks more closely at major (neuro)biological transitions in the evolution of the mind, and basically sketches the evolution of neural systems and how learning ties into that. It should be stressed that most of the book is about minimal animal consciousness, not about human consciousness.

Instead of trying to summarize the book in more detail, I’ll quote some of the praise I found on the MIT website – and I can say after having read it, none of it is hyperbole. But first let me quote the blurb to give you the general idea:

A new theory about the origins of consciousness that finds learning to be the driving force in the evolutionary transition to basic consciousness. What marked the evolutionary transition from organisms that lacked consciousness to those with consciousness—to minimal subjective experiencing, or, as Aristotle described it, “the sensitive soul”? In this book, Simona Ginsburg and Eva Jablonka propose a new theory about the origin of consciousness that finds learning to be the driving force in the transition to basic consciousness. Using a methodology similar to that used by scientists when they identified the transition from non-life to life, Ginsburg and Jablonka suggest a set of criteria, identify a marker for the transition to minimal consciousness, and explore the far-reaching biological, psychological, and philosophical implications.

After presenting the historical, neurobiological, and philosophical foundations of their analysis, Ginsburg and Jablonka propose that the evolutionary marker of basic or minimal consciousness is a complex form of associative learning, which they term unlimited associative learning (UAL). UAL enables an organism to ascribe motivational value to a novel, compound, non-reflex-inducing stimulus or action, and use it as the basis for future learning. Associative learning, Ginsburg and Jablonka argue, drove the Cambrian explosion and its massive diversification of organisms. Finally, Ginsburg and Jablonka propose symbolic language as a similar type of marker for the evolutionary transition to human rationality—to Aristotle’s “rational soul.”

Here’s Axel Cleeremans, Director of ULB Neuroscience Institute in Brussels, Belgium:

This massive and challenging book is by far the most thorough attempt at exploring consciousness from a biological and evolutionary perspective. Most impressive is the successful integration of philosophical, historical, neuroscientific, and biological considerations in addressing this most vexing question: How and why did consciousness emerge out of biological activity?

Or Jean-Pierre Changeux, honorary professor at the Pasteur Institute in France:

It is the best synthesis I know about consciousness. It includes a fascinating history of the concepts and discoveries about consciousness together with an outstanding presentation of the most recent scientific data, theories and philosophical speculations.

And finally Cyriel Pennartz, from the University of Amsterdam:

Based on the view that consciousness subserves fulfillment of an animal’s needs and goals, Ginsburg and Jablonka take us on an engaging journey from Aristotle to contemporary neuroscience, culminating in the daring but well-informed hypothesis that consciousness coheres with complex forms of learning. This book made me think differently of the Cambrian explosion of life, the roots of animal cognition, and the very origins of human thinking. This accessible and inspiring book offers a wealth of information and deep thought for everyone interested in the rich interface between biology, psychology, and philosophy.

Last year I read Contingency and Convergence: Toward a Cosmic Biology of Body and Mind by Russell Powell, a true intellectual feast. Ginsburg & Jablonka’s book touches on many of the same themes, but frames them differently. Powell’s book is about the nature of evolution, minds, and the possible implications for astrobiology, Ginsburg & Jablonka focus on learning and the evolutionary history of neural systems, including a chapter on jellyfish and the likes that was more informative than Jellyfish by Lisa-Ann Gershwin.

For a wee bit of critique: I would have liked a bit more sections on (the neurology of) mental representation. To me it felt as if Ginsberg & Jablonka don’t fully engage with this part of the consciousness problem, especially as I’ve read Alex Rosenberg’s How History Gets Things Wrong: The Neuroscience of Our Addiction to Stories – a book specifically about that. I would have liked to read the authors’ take on what Rosenberg wrote.

Anyhow, what makes this book a joy to read is its enormous scope, and what makes it truly amazing is its attention to detail on nearly everything it touches: this is no quick pop-science overview of the latest research, no, this is the real deal: interdisciplinary scholarly work of the highest order.

The book is clear and self-contained, and requires no previous knowledge, but at times it is tough reading nonetheless – especially parts of chapter 8 were beyond my level of interest of understanding. This will be different for different kind of readers, but this is obviously an academic book, so your mileage may vary.

Jonathan Birch’s 7-page critical essay on the book in Acta Biotheoretica is well-worth reading, he summarizes it in just two sentences: “Ginsburg and Jablonka’s thesis, in short, is that second-order conditioning involving novel, compound stimuli is a signature of consciousness. This kind of learning cannot happen, they claim, if the stimuli are not consciously experienced.”

If the subject matter interests you, I cannot recommend this book highly enough. Together with How Molecular Forces and Rotating Planets Create Life: The Emergence and Evolution of Prokaryotic Cells by Jan Spitzer – coincidentally about the first Aristotelian transition – it is the best book I’ve read all year.

I’ll leave you with a whole lot of quotes and insights I wish to preserve for myself.

Continue reading


How Molecular Forces and Rotating Planets Create Life Jan Spitzer

I thought I understood a thing or two about biology, and, more specifically, its genetic and general molecular side as well. I’ve read a couple of introductory level university course textbooks, like Biology, Evolution and Human Nature by Goldsmith & Zimmerman (2001), which was already pretty heavy on chemistry for somebody without an academic background in hard sciences, and a few more specific books, like the excellent The Flexible Phenotype by Piersma & Van Gils (2011) and Alex Rosenberg’s brilliant, rigorous Darwinian Reductionism, Or, How to Stop Worrying and Love Molecular Biology (2006).

I also thought I had a bit of grasp on origin of life theory, since I read Nick Lane’s excellent The Vital Question: Energy, Evolution and the Origins of Complex Life (2015), a book I can’t say I understood completely, but enough so to enjoy it a lot.

Last year, I was absolutely gobsmacked by Contingency and Convergence: Towards a Cosmic Biology of Body and Mind by Russell Powell, a 2020 publication in the Vienna Series of Theoretical Biology, and so when I checked what else was published in that series, I didn’t hesitate to buy How Molecular Forces and Rotating Planets Create Life: The Emergence and Evolution of Prokaryotic Cells by Jan Spitzer – I was intrigued by the subject matter because of Lane’s book, and if I’d survived that, how hard could it be?

Well, it turns out this was harder, much harder, yet I probably enjoyed it even more. Part of that enjoyment is witnessing other people’s genius, but the main reason I enjoyed it so much was because it provided entirely new and much more detailed insight in the miracle that is our existence.

Before I get to a more detailed discussion of the book, please consider the following drawing – a typical representation of a bacterial cell I found somewhere on the public domain.

prokaryote cell

This is the way most people are taught about cells. We tend to think we *understand* cells this way – at least, if we study some more of these drawings – including ones that zoom in a bit – and the accompanying chapters on cell biology carefully.

Now consider this fragment from Jan Spitzer’s book, and, for starters, compare the way the cytoplasm is represented in the generic textbook drawing with what Spitzer writes about it.

From a purely chemical point of view, a bacterial cell is exceedingly complicated. The cytoplasm contains in round numbers ~2,500,000 protein molecules of ~1,000 different kinds, ~200,000 transfer RNAs of ~50 kinds, ~1,500 short-lived messenger RNAs of ~400 kinds. (…) The number of ribosomes can vary between 2,000 for a slow-growing population and 70,000 in a fast-growing population. These biomacromolecules are hydrated by a relatively concentrated (~4%) electrolyte – a multicomponent buffered solution of simple ions, particularly potassium ions and phosphate, and other low-molecular weight metabolites from biochemical pathways (…). All this chemistry of long DNA double helices (partly condensed or coacervated by cationic proteins and amines), RNAs, and their protein complexes, all in their correct three-dimensional conformations, and all exhibiting their molecular motions – from bond rotations to large conformational motions and rotational and translational Brownian diffusion, taking place on timescales of many orders of magnitude, from femtosecond infrared motions to physiological motions at milliseconds, seconds, and hours – all this molecular motion is crowded and enclosed within the hydrophobic cell envelope. The cell envelope contains a lipid bilayer membrane, studded with a large number of integral hydrophobic proteins that sense the physicochemical state of both the external nutrient environment and the internal cytoplasmic side of the membrane and adjust the molecular and ionic traffic across the membrane accordingly. (…) The overall chemical system is in cyclic disequilibrium, where cells approximately double in size and then divide on the physiological timescale of seconds to hours.

Additionally, in all this, also the positions of all those different molecules matter, as there is no “bulk aqueous reservoir where chemical potentials (concentrations) are independent of position”, and so the cell system is “thus vectorial”, with aqueous nano-channels and nano-pools of dissolved ions and molecules.

It is yet another example of the huge gap that exists between what people – even highly educated people – think they know, and how the world actually is. It makes books like Spitzer’s humbling and full of wonder – even if that wonder is abstract, dry, and highly complex. Do we truly appreciate the wonder of life enough?

There’s one important caveat: however detailed that quote might seem, it only scratches the surface too. Or, to quote Spitzer again: “Today the molecular crowdedness of a living cell is an uncontroversial and well-appreciated fact, but its overall spatiotemporal complexity remains poorly understood.”

Just to be clear: I’m not the target audience for Spitzer’s book. Certain parts – when he got into the nuts and bolts of detailed chemical stuff – were way too advanced for me. I’d say about 1/3rd of the text was too technical for my current brain. But that doesn’t mean I couldn’t understand Spitzer’s general message – it only meant that I could not contradict him on the technicalities. The fact that the main text is only 170 pages, but about 1/3rd of the full volume is academic credentials (20 pages of notes, 26 pages of references, a 5 page index) is indicative of its intellectual rigorousness.

I think one of the reasons that makes this book successful is that Spitzer approached it as a hobby. He has had no academic career in biology, but he is a physical chemist (PhD) and a chemical engineer (MS) with expertise in thermodynamics and aqueous colloids, who worked as a industrial R&D manager, on synthetic latexes and emulsion polymerization processes. The fact that he is retired and has no skin in the game allowed him to write freely and thoroughly. More information on Jan Spitzer and his ideas can be found here.

In the remainder of this text, I will try to summarize Spitzer’s main points, and conclude with a list of quotes & fragments of knowledge that struck me and that I wish to keep record of. Most of those should also be worthwhile to readers with an advanced interest in science, but you might need a dictionary depending on your prior knowledge – I know I needed one. As a coda, there’s a shortened version of a reading list Spitzer himself provides in his introduction.

For a review by someone with an academic background in these matters, I refer you to the Small Things Considered blog. It has a good, fairly detailed outline of the book. It is the only review of the book I found online, so I hope I contribute a bit to Spitzer’s dissemination with my own review – especially for those that are looking for more information about it without easy access to academic libraries.

Do I recommend it? I loved it, but if you’re not academically trained in these matters ymmv, so much is clear – if you’re adventurous, like a serious challenge, and want to keep your mind limber, go for it, I’d say. It’s also crystal clear that this is mandatory reading for anybody with a serious academic interest in the matter.

Continue reading


First a general overview & appraisal of the book, and after that there’s a fairly lengthy section with quotes and paraphrases of nuggets of wisdom I want to keep on record, and those could be interesting for you too.

For starters, the summary on the back: “In this book, Russell Powell investigates whether we can use the patterns and processes of convergent evolution to make inferences about universal laws of life, on Earth and elsewhere. Weaving together disparate philosophical and empirical threads, Powell offers the first detailed analysis of the interplay between contingency and convergence in macroevolution, as it relates to both complex life in general and cognitively complex life in particular. If the evolution of mind is not a historical accident, the product of convergence rather than contingency, then, Powell asks, is mind likely to be an evolutionarily important feature of any living world?”

Or, as the MIT website states it in short: “Can we can use the patterns and processes of convergent evolution to make inferences about universal laws of life, on Earth and elsewhere?”

The book doesn’t presuppose a lot of working knowledge: Powell takes care to explain all the concepts and the history of science & philosophy one needs to understand his arguments. As such it is perfectly self-contained, BUT, mind you: this is hardcore stuff, it is not a popular science book at all. It has 280 pages of carefully and tightly argued text, there’s not a lot of redundancy, not even on the sentence level, and as such keeping a search engine at hand while reading this is no luxury. Continue reading

DARWINIAN REDUCTIONISM – Alex Rosenberg (2006)

Darwinian Reductionism

Darwinian Reductionism, Or, How to Stop Worrying and Love Molecular Biology must be one of the toughest books I’ve read. Luckily, it’s fantastic.

Alex Rosenberg is a professor of both Philosophy and Biology at Duke University. He has written about the philosophy of science before, like a book about the non-validity of economics as a science. Rosenberg is a true intellectual powerhouse, and to watch his mind work over the course of this book’s 238 pages (+ about 30 pages of references and index) is one of the pleasures of reading this book.

Kim Sterenly sketches what it’s about on the back cover:

“Over the last twenty years and more, philosophers and theoretical biologists have built an antireductionist consensus about biology. We have thought that biology is autonomous without being spooky. While biological systems are built from chemical ones, biological facts are not just physical facts, and biological explanations cannot be replaced by physical and chemical ones. The most consistent, articulate, informed, and lucid skeptic about this view has been Alex Rosenberg, and Darwinian Reductionism is the mature synthesis of his alternative vision. He argues that we can show the paradigm facts of biology – evolution and development – are built from the chemical and physical, and reduce to them. Moreover, he argues, unpleasantly plausibly, that defenders of the consensus must slip one way or the other: into spookiness about the biological, or into a reduction program for the biological.”

But for many people, including scientists, there are problems with materialistic reductionism, as Elliot Sober explains on the back cover, before pointing out how Rosenberg tackles those problems.

“For most philosophers, reductionism is wrong because it denies the fact of multiple realizability. For most biologists, reductionism is wrong because it involves a commitment to genetic determinism. In this stimulating new book, Rosenberg reconfigures the problem. His Darwinian reductionism denies genetic determinism and it has no problem with multiple realizability. It captures what scientific materialism should have been after all along.”

I will not get into the nuts and bolts of every argument. Aside from a general appraisal of the book, I’ll elaborate a bit on two small – yet fundamental – elements of critique, and end with a list of nuggets of wisdom I found while reading – a list that is probably of interest to those readers not interested in the general content of this book, yet who do have a healthy interest in science.

Continue reading